搜索
搜索
imgboxbg

Products

整流器

全部分类
您现在的位置: 首页 > 杏彩体育官网 > 整流器
浏览量:
1

杏彩体育:单相整流器工作原理 Fed PWM控制的原则

  单相控整流器是使用单一胸腔调节器控制当前流量的一类级控整流器。 与只允许流向一个方向的二元整流器
数量
-
+
库存:
0
产品描述

  单相控整流器是使用单一胸腔调节器控制当前流量的一类级控整流器。 与只允许流向一个方向的二元整流器不同, 单相控整流器允许双向控制电流。 通过调控胸腔的射击角度, 输出电压和电流可以管理, 使负载的

  单相控整流器,又称级控整流器,在电动电子应用中起着关键作用,这些装置用于将交替电流(AC)转换成导电流(DC),能够控制输出电压,通过调整能够转换大电流的半导体,即胸腔的点火角度(或相角)来达到这一目的。

  半波控制的整流器使用一个与载荷连成序列的单一胸腔,一旦在输入AC供应正半循环期间在特定射击角度触发,则该胸腔开始运行,输出电压波形由发射角度和输入AC电压振幅决定。通过调整射击角度,平均输出电压可以控制,这影响到向载荷输送的电量。然而,半波控制的整流器的缺点是只使用输入AC波形的一半,导致高度的调音扭曲和低功率系数。

  全波控制整流器使用两个或两个以上胸腔整流器,其效率高于半波对应器,这些整流器使用输入AC供应的正和负半循环,有两种主要类型的全波控制整流器:中点配置和桥梁配置。

  中点 或 中点 配置 中点 或 中点 配置 是 使用 中点 变压器 和 2 个 胸腔 的 设置 。 变压器 的 二次 刮线 分为 两半 , 中点 与 负载 连接 。 您的 胸围 将 二次 转线 连接 在 二次 刮线 和 负 负荷 的 端 。 通过 相继 触发 胸围 , 校正 校正 的 在 输入 AC 供应 的 正 和 负 半 周期 进行 , 通过 调整 射击 角度 控制 输出 。 然而, 此配置 的 缺点是 需要 中点 上 的 变压器 , 其 成本 和 繁琐 。

  桥形配置是一种分阶段控制的整形器,它使用在桥顶地形中排列的四根胸腺。 这样就不再需要一个中央挂起的变压器,使它成为一个更紧凑和更具成本效益的设计。 在桥形配置中,正半循环期间,两对对立的对立体行为,在负半循环期间,另外两对面的对立体行为。 通过调整胸口的射击角度,输出电压可以被控制。 与中点配置相比, 桥形变压器有若干优点, 包括更高的效率、更好的功率因素和较低的调力扭曲。

  单阶段控制校正器的性能是根据平均输出电压、输出电流、波纹系数、功率系数和完全调和扭曲等参数进行评估的。 调整射击角度的控制技术包括常态射击角度控制、整体循环控制以及脉冲宽调制。

  常态射击角度控制是一种技术,在整治过程中,使圣灵信徒的射击角度固定不变,这是调节平均输出电压的直截了当的方法,但可能导致动力因素和口音扭曲问题,特别是在低输出电压水平上。

  集成循环控制是一种控制输出电压的方法,它通过开关胸腔和关机来控制固定数量的完整输入电压循环。这种方法可以帮助改善动力因素和减少口音扭曲,但也可能造成大量的输出电压和当前波纹,从而在某些应用中造成更多的噪音和意外影响。

  Pulse-width 调制法(PWM)是一种先进的控制技术,用于动态地改变胸腔的射击角度,以达到理想的输出电压波形。通过仔细选择射击角度,PWM可以尽量减少调制曲解,改善功率系数,并提供更好的输出电压调节。然而,PWM控制的校正器需要更复杂的控制电路,可能需要先进的数字微处理器。

  单相控整流器在一系列领域,包括电池充电、变速机动车驱动器、电子装置的电力供应、电动车辆充电站等,都有广泛的应用。 由于它们有能力调节输出电压和处理高功率电,这些整流器适合各种工业、商业和住宅应用。

  最后,必须指出,单阶段控制修正装置由于能够高效率和准确地将空调功率转换为DC功率,在电力电子设备中广泛使用单一阶段控制修正装置。工程师们可以利用其对操作原则、性能参数和控制技术的知识,在一系列应用中设计和实施这些装置。 随着技术和控制战略的继续推进,单阶段控制修正装置仍将是满足现代电力系统需求的关键组成部分。

  根据用于控制输出电压的转换器类型,单相控整流器可分为几类,这些类别包括半对流器、双电、全电和序列转换器。

  双向转换器属于单相控整流器类别,能够向负负向负向负向负向负向负向负向向负向向负向向向负向向向负向向向负向向向向向向负向向向向向向向向向向向向向向投电,使两向转换器比半波转换器更具有多功能性,双向转换器由两个转换器组成,一个作为整流器,另一个作为反向转换器,使两向转换器能够用于需要双向电流的应用程序。此外,双向转换器是专门为四平方操作设计的,通常用于可逆和可变速的DC驱动器。

  第一个象限用于前方马达,其中转换器 1 以正向模式在上方,而胸腺的射击角度低于90度。第二个象限用于再生制动,其中转换器 2 以反向模式在上方,而胸腺的射击角度大于90度。第三个象限用于反向马达,其中转换器 2 以正向模式在上方,而胸腺的射击角度低于90度。第四个象限用于再生制动制动,其中转换器 1 以反向模式在上方,而胸腺的射击角度大于90度。

  虽然双重转换器具有更大的多功能性和双向电流,但其复杂性和部件要求的提高使其比半转换器和单阶段全波控制的全波控制整变器更昂贵和复杂,此外,双重转换器可能会在输入电流中造成更高程度的调和扭曲,导致传输和配电系统增加电力损失,以及电磁干扰问题,因此,仔细评估各种整变器类型之间的权衡对设计高效和高性能电子系统至关重要。

  单相半转换器由两个胸腔或立方体和两个二极管组成。 立方体作为固态开关,使流向一个方向流动, 当触发时, 这些装置也被称为“ 胸腔”。 在单相半转换器中, 一个二极管和一个 SCR 控制着AC 输入电压的正半循环, 另一个二极管和 SCR 控制着负半循环。 发送到负半循环的平均DC电压可以通过控制触发脉冲到 SCR 的时间来调整。 SCR 的导向角度是您心室处于前向偏向状态的期间, 进行当前。 与 AC 波形零中转点相关的胸腔触发脉动的时间决定着导角度, 可以通过调整触发脉冲的时间来修改该角度, 从而控制发往负载的DC平均电压。

  半置换器提供了一种简单有效的方法来控制用两个 SRR 和两个二极管交付给一个负荷的DC电压。但是,它们的输出电压限制在峰值输入电压的64%(将在下面的偏移中解释),而交付给负荷的平均DC电压低于全波校正器的电压。如果峰值输入电压被指定为 V ,则其输出电压将限制在峰值输入电压的64%(将在下面的偏移中解释),而交付给负荷的平均DC电压将低于全波校正器的电压。P,以及SCR作为α的发射角度,输出电压的平均值等于:

  单阶段半转换器只进行一个象限操作,在I象限内前行机动,在设计动力电子系统以确保最佳性能和效率时,必须仔细考虑不同类型矫正器之间的权衡。

  单阶段完整转换器使用4个 SCR 提供恒定的DC输出电压。 与双转换器一样,全转换器提供不间断的输出电压,支持双向电流。 随着4个 SCR 的安装,全转换器能够为AC 输入电压的正和负半循环提供连续输出电压。

  完全转换器在两个象限内运行:I象限内的前向运动和IV象限内的反向制动。在前向运动中,输入电压适用于与输出电压相同的极值的负载。在反向制动时,输入电压适用于与输出电压相对的极值的负载,允许负载将能量作为热能消散或将能量返回电源。这样,完全转换器就适合应用诸如DC发动机驱动器等应用程序,即机动和制动操作需要双向电流。

  单相全转换器可以在两个方位内操作:前向运动的第一个方位(I)和反向制动的第四个方位(IV)。在第一个方位操作中,输入电压以与输出电压相同的极度提供给负载,而在第四个方位操作中,输入电压作为输出电压适用于对极的负载。这使得负载能够将能量作为热量排出,或将能量返回到电源,使完全转换器能够理想地用于双向电流应用,如需要机动和制动操作的DC汽车驱动器。

  完全转换器提供双向电流和连续输出电压,需要4个电解码和额外的控制电路。 完全转换器可以在输入电流中产生更高程度的调和扭曲,这可能导致增加电流损失和电磁干扰等问题,因此,在设计电动电子系统以实现最佳效率和性能时,必须认真评价不同类型整洁器之间的取舍。

  系列转换器混合使用半转换器和双转换器,提供正和负输出电压,包括两个半转换器和一个连成系列的双转换器,在需要高功率和精确控制输出电压的应用中,通常使用序列转换器。

  三相控整流器是用于将三相AC功率转换为DC功率的电动电子设备中广泛使用的一个组件。这些整流器在电源、可变速度驱动器和电动等不同领域都能找到应用。三相控整流器的基本配置包括由桥状表层排列的六个二极管,与导管或其他半导体开关同时连接,以调节整流器的输出电压。有两大类三相控整流器:六波和十二波整流器。六波整流器是最简单、最常用的。三相控整流电路的每个阶段都有三根导管,按顺序发射,以产生脉冲输出电压。然后,输出电压通过过滤电容器平滑,产生DC电压。

  另一方面,12个脉冲整流器有2个6个脉冲整流器同时连接,以产生更顺畅的DC输出电压。它们需要一个更复杂的控制系统来同步两个脉冲整流器。

  三阶段控制的整变器比单阶段控制的整变器具有若干优势,包括高功率输出、低调扭曲和更高的效率,但是,它们更为复杂,需要更先进的控制系统,此外,它们需要更多半导体开关,这可以增加整变电路的成本。

  工业应用中广泛使用三相控校正器,因为它们能够提供可调适的DC电压,且能变换电力。不过,这些校正器在输入当前调和曲解方面有很大的缺点。校正电路的非线性导致输入电流中含有可造成动力系统干扰、对其他连接设备性能产生不利影响的调和电流。完全的调和扭曲(THD)因子可用于测量输入中的调和电流扭曲。THD因子表示输入流的调和值与基本频率组成部分的RMS值之比。高的THD因子可造成电压扭曲、降低功率质量和增加功率损失。

  因此,必须尽量减少高分辨率因子,以提高动力系统的性能和可靠性,可以采用不同的控制战略,减少三相控制的整治器,如口腔注射、脉冲跳和空间矢量调制等,输入时时的调和扭曲。

  三相控整流器中的输出波变电压是指DC输出电压与其预期恒定值的波动。这种波变电压是被纠正的输出波形脉冲性质造成的,而这种波变电压的产生是由于原主的调换动作造成的。

  三相控整流器中输出波纹电压的振幅与负电流和AC输入电压的频率直接成正比。因此,如果负电流增加或输入电压频率降低,输出波电压的振幅也会增加。波纹电压的增加降低了DC输出电压的总体质量。

  为了减少三相控制整流器的输出波纹电压,使用了各种技术,如电能、感应和LC过滤技术,这些过滤技术使用被动部件,包括电容器和感应器,以平滑DC输出波形的脉冲,降低输出波波的振。

相关产品

Copyright © 杏彩体育(xingcai)杏彩体育官网app 技术声明        浙ICP备11008472号-12        网站建设:中企动力台州

杏彩体育